Genomic adaptation of prokaryotic organisms at high temperature

نویسندگان

  • Surajit Basak
  • Pamela Mukhopadhyay
  • Sanjib Kumar Gupta
  • Tapash Chandra Ghosh
چکیده

One of the central issues of evolutionary genomics is to find out the adaptive strategies of microorganisms to stabilize nucleic acid molecules under high temperature. Thermal adaptation hypothesis gives a link between G+C content and growth temperature if there is a considerable variation of guanine and cytosine content between species. However, there has been a long-standing debate regarding the correlations between genomic GC content and optimal growth temperature (Topt). We urged that adaptation to growth at high temperature requires a coordinated set of evolutionary changes affecting: (i) nucleic acid thermostability and (ii) stability of codon-anticodon interactions. Moreover, in Bacillaceae family we have demonstrated that a higher genomic GC level do not have any role in stabilizing mRNA secondary structure at high growth temperature. Comparative analysis between homologous sequences of thermophilic Thermus thermophilus and mesophilic Deinococcus radiodurans suggests that increased levels of GC contents in the coding sequence corresponding to strand structure of Thermus thermophilus genes have stabilizing effect on the mRNA secondary structure, whereas increased levels of GC contents in coding sequences corresponding to aperiodic structure have destabilizing effect on the mRNA secondary structure. In this perspective, a critical review of thermal adaptation hypothesis is further advocated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth Temperature and Genome Size in Bacteria Are Negatively Correlated, Suggesting Genomic Streamlining During Thermal Adaptation

Prokaryotic genomes are small and compact. Either this feature is caused by neutral evolution or by natural selection favoring small genomes-genome streamlining. Three separate prior lines of evidence argue against streamlining for most prokaryotes. We find that the same three lines of evidence argue for streamlining in the genomes of thermophile bacteria. Specifically, with increasing habitat ...

متن کامل

Detection and mapping of QTL for temperature tolerance and body size in Chinook salmon (Oncorhynchus tshawytscha) using genotyping by sequencing

Understanding how organisms interact with their environments is increasingly important for conservation efforts in many species, especially in light of highly anticipated climate changes. One method for understanding this relationship is to use genetic maps and QTL mapping to detect genomic regions linked to phenotypic traits of importance for adaptation. We used high-throughput genotyping by s...

متن کامل

Genomic determinants of protein folding thermodynamics in prokaryotic organisms.

Here we investigate how thermodynamic properties of orthologous proteins are influenced by the genomic environment in which they evolve. We performed a comparative computational study of 21 protein families in 73 prokaryotic species and obtained the following main results. (i) Protein stability with respect to the unfolded state and with respect to misfolding are anticorrelated. There appears t...

متن کامل

Molecular basis of cold adaptation.

Cold-adapted, or psychrophilic, organisms are able to thrive at low temperatures in permanently cold environments, which in fact characterize the greatest proportion of our planet. Psychrophiles include both prokaryotic and eukaryotic organisms and thus represent a significant proportion of the living world. These organisms produce cold-evolved enzymes that are partially able to cope with the r...

متن کامل

Evidence of a Large Novel Gene Pool Associated with Prokaryotic Genomic Islands

Microbial genes that are "novel" (no detectable homologs in other species) have become of increasing interest as environmental sampling suggests that there are many more such novel genes in yet-to-be-cultured microorganisms. By analyzing known microbial genomic islands and prophages, we developed criteria for systematic identification of putative genomic islands (clusters of genes of probable h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010